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PROLOGUE

Sensitivity analyses of sea-air CO2 flux to gas transfer algorithms, climatological wind speeds,

sea surface temperature (SST) and salinity (SSS) were conducted for the global oceans and

selected regional domains. Large uncertainties in the global sea-air flux estimates are identified

due to different gas transfer algorithms, global climatological wind speeds, and seasonal SST and

SSS data. The global sea-air flux ranges from -0.57 to -2.27 Gt/yr, depending on the

combination of gas transfer algorithm and climatological wind speeds used. Different

combinations of SST and SSS global fields resulted in changes as large as 35% on the oceans

global sea-air flux. An error as small as +0.2 in SSS translates into a +43% deviation on the

mean global CO2 flux. This result emphasizes the need for highly accurate satellite SSS

observations for the development of remote sensing sea-air flux algorithms.

There are significant regional patterns in the distribution of oceanic sources and sinks of C02.

The Southern Ocean (-0.58 to -1.48 Gt/yr), North Atlantic (-0.27 to -0.73 Gt/yr), and North

Pacific (-0.17 to -0.48 Gt/yr) are the largest sinks of CO2 throughout the year. The equatorial

Pacific is the largest source of CO2 (0.28 to 0.81 Gt/yr) with positive values throughout the year.

The Indian Ocean and the equatorial Atlantic are weak sources of CO2 throughout the year (0.04

to 0.16 Gt/yr). The Southern Ocean has the largest seasonal cycle with a peak in ocean uptake

during January-February (-1.10 to -2.86 Gt/yr). The North Atlantic and North Pacific Oceans

have a reduced seasonal cycle, with strongest uptake during fall-winter and nearly neutral

conditions during the summer months. These regions have small outgassing (North Pacific) or

small ingassing (North Atlantic) of CO2 during the summer months because the potentially high

pCO2 values due to elevated SST conditions are counterbalanced by an increased pCO2

drawdown by biological activity. The Indian Ocean, equatorial Pacific, and equatorial Atlantic

have no distinctive seasonal cycle.
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1. Introduction

The global sea-air flux of C02 is strongly dependent on the sea-air pCO2 difference (ApCO2) and

the gas exchange coefficient. These two components of the air-sea flux have similar ranges of

variability in the ocean and, therefore, are equally important in determining the accuracy of the

estimated flux. The gas exchange coefficient is primarily a function of the wind speed (Liss and

Merlivat, 1986; Tans et al., 1990; Wanninkhof, 1992), but the ocean pCO2 is highly dependent

on temperature and salinity, which is a primary focus of this study. The ocean pCO2 is a function

of the total carbon dioxide TCO2 concentration, the total alkalinity (Lee et al., 2000), and

dissociation constants for the chemical components of the CO2 system (Antoine and Morel,

1995; Signorini et at., 2001a; Signorini et al., 2001b). The dissociation constants are functions

of temperature and salinity (Dickson and Millero, 1987). The distribution of surface alkalinity in

the open ocean is mainly controlled by the factors that govern salinity (Broecker and Peng, 1982;

Millero et al., 1998). Therefore, accurate measurements of seasonal and interannual changes of

surface salinity and temperature of the world's oceans is central to studies of global carbon flux.

The biological uptake of CO2 is also an important component of the carbon cycle in the oceans.

Algorithms for primary production that rely on satellite ocean color data (Behrenfeld et aI.,

2001) provide an important tool for global assessments of biological effects on the pCO2

variability.

Traditional methods (hydrographic cruises) of salinity and temperature measurements have been

used for many years to compile comprehensive climatological data sets (Conkright et al., 1998).

More recent studies, for example, the World Ocean Circulation Experiment (WOCE), have

amplified our knowledge of the salinity and temperature variability in the oceans. The use of

remote sensing techniques, e.g., AVHRR for sea surface temperature (SST), combined with

optimal interpolation using ancillary in situ data (Reynolds and Smith, 1994), provides much

higher spatial and temporal resolution of the SST of the world's oceans. More recently, remote

sensing of sea surface salinity (SSS) has become a viable technique (Lagerloef et al., 1995) and

efforts are currently underway at NASA and the European Space Agency (ESA) to design

satellite salinity sensors. Should global remote sensing of SSS with sufficient accuracy become

operational, the data would be invaluable for estimating global carbon fluxes. In this NASA

Technical Memorandum, we conduct a sensitivity analysis of the global sea-air CO2 flux to gas

transfer algorithms, climatological wind speeds, and variability of surface salinity and

temperature.

2. Methodology and Data Sources

We used an ocean pCO2 model (Signorini et al., 2001a; Signorini et al., 2001b), combined with

algorithms for TA and gas transfer, to estimate the seasonal sea-air CO2 flux for the global

oceans. The required input data for the ocean pCO2 model are SST, SSS, TA, and TCO2. The

seasonal TA was obtained from the algorithm of Millero et al. (1998), which is a function of SST

and SSS,

SSS
TA=NTA_ (1)
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NTA=A+B(SST_To)+ C(S ST_To )2 (2)

where NTA is the normalized TA. The coefficients A, B, and C, and reference temperature To,

vary according to specific ocean basins and regional domains (Millero et al., 1998). The

seasonal SST and SSS global fields are from the World Atlas 1998 (Conkright et al., 1998). For

the purposes of this analysis the TA estimates are assumed to be error-free.

Existing TCO2 algorithms are still not accurate enough to retrieve required ApCO2 values within

reasonable limits. Over the global oceans, ApCO2 vary from -100 gatm to +100 gatm, but its

global mean is always between 0 and -6 gatm. An error of 1 gmol/kg in TCO2 translates into an

error of -1.5 gatm on pCO2. Lee et al. (2000) compared TCO2 fields obtained with their SST

and SSS algorithm to the TCO2 fields obtained from the ,combination of Takahashi et al. (1997)

pCO2 data and TA fields. The differences are very large (+40 gmol/kg). For this reason we

computed the TCO2 seasonal fields from available ocean pCO2 data (Takahashi et al., 1997),

seasonal TA fields derived from the Millero et al. (1998) algorithm, and SST and SSS from

World Atlas 1998 (Conkright et al., 1998) climatology. Therefore, the TCO2 seasonal fields

calculated this way, combined with the TA, SST, and SSS seasonal fields, reproduce the seasonal

pCO2 data from Takahashi et al. (1997) exactly. The combination of these input data sets was

used to perform the sensitivity analysis in this study.

The air-sea CO 2 flux (FC02) is calculated using the following formulation:

FCO 2 = PKoO_ApCO 2 (3)

where P is the water density (kg m-3), Ko is the gas transfer coefficient, ApCO2 (gatm) is the

difference between sea and air pCO2, and o_ is the CO2 solubility (mol kg -1 atm-1), which is

calculated from temperature (°K) and salinity using the formulation of Weiss and Price (1980),

lna=-162.8301+218.29681n Tx +90.924 _,100)

,Eo 00  22 I /+00049   / 1]
1.47696

(4)

Four gas transfer algorithms were used. The algorithms are a function of the wind speed u in
-1

ms:



I. Liss and Merlivat (1986):

k w = 0.17u

k w = 2.85u - 9.65

k w = 5.9u-49.3

,for u <3.6

,for 3.6< u < 13

,for u > 13

(5)

II. Wanninkhof (1992) for long-term averaged wind:

k w = 0.31 u 2 (6)

Ill. Tans et aI. (1990) for u > 3 m s-1 (E=0 for u < 3 m s-l):

E(moles CO 2 m-2yearl/.tatm -1) = 0.016[u- 3] (7)

IV. Wanninkhof and McGillis (1999) for long-term averaged wind:

k w = 1.09u - 0.333u 2 + 0.078u 3 (8)

For algorithms I, II, and IV, equation (3) is used with Ko (cm h -a) defined as

1

K° = kw _ 660 )
(9)

where Sc is the Schmidt number given by

Sc = 2073.1 - 125.62SST + 3.6276SST 2 - 0.043219SST 3 (10)

For the Tans et al. (1990) algorithm (III), FCO2=E ApCO2 in units of moles C02 m -2 year -1. To

convert FC02 to moles CO2 m -2 year -1 in equation (3), we must convert Ko to m yr -1 (Ko

x24x365/100) and o_to mol kg -1 gatm -1 (0_×10-6).

The atmospheric surface pCO2 data was obtained from the NOAA/GMCC Flask Sampling

Network (Conway and Tans, 1996). These data are available from numerous sites on the globe,

with the longest record covering the period of 1967-1993. The secular trend of atmospheric CO2

does not change significantly throughout the Earth's atmosphere, but the seasonal cycle does.

The amplitude of the seasonal cycle is largest at high northern latitudes and smallest at the south

pole due to the geographic distribution of land vegetation and marine phytoplankton affecting the

spring-summer uptake of CO2 via photosynthesis. Seasonal global distribution of atmospheric

pCO2 for 1990 was obtained from concurrently available data at three sampling sites, Cold Bay

(55°N), Mauna Loa (19.5°N), and the south pole (90°S). The year 1990 was chosen because it is



thereferenceyearusedby Takahashiet al. (1997) to correct the pCO2 observations used in their

global carbon flux estimates. Therefore, our carbon flux estimates are also for 1990.

Seasonal averages were obtained from 3-month composites coinciding with the SST and SSS

seasonal averages. A latitude-dependent global seasonal distribution of atmospheric pCO2 at

one-degree resolution was constructed by spline interpolation (Akima, 1970) based on the three

concurrently available records from the three chosen sites (Figure 1).

Each of the four algorithms were used with three different wind speed climatologies: Esbensen

and Kushnir (1981), wind scatterometer data from European Remote Sensing (ERS) Satellites,

and winds (Wentz, 1997) derived from the Special Sensor Microwave/Imager (SSM/I). The

ERS (www.ifremer.fr/cersat/), SSM/I (www.ssmi.com), and Esbensen&Kushnir (ingrid.ldeo.columbia.edu)

winds were obtained via the web. The seasonal wind speed maps for these three climatological

data sets are shown in Figures 2, 3, and 4, respectively.

Sensitivity tests were also conducted with different SST and SSS climatologies. These included

the World Ocean Atlas 1998 (Conkright et al., 1998), the World Ocean Atlas 1994 (Levitus and

Boyer, 1994; Levitus et al., 1994), and the Reynolds and Smith SST data (Reynolds and Smith,

1994).

3. Sensitivity to Gas Transfer Algorithms and Wind Speed Climatologies

Results from the application of the three wind speed climatologies and four different gas transfer

algorithms are provided for the global oceans and regional domains in Tables 1, 2, and 3, and in

Figures 5 through 10. Figures 5, 6, and 7 show the seasonal and spatial variability of the sea-air

CO2 flux for the four gas transfer algorithms and the three" different wind speed climatologies.

A summary of globally and regionally averaged wind speeds for the three wind data sets is

provided in Table 4. The sea-air flux varies with the gas transfer algorithm and wind speed

climatology used. As summarized in Tables 1, 2, and 3, the smallest global sea-air CO2 flux is

obtained with the Liss and Merlivat (1986) gas transfer algorithm for all three wind speed

climatologies. The SSM/I winds (Table 2) produce the lowest global flux (-0.57 Gt/yr), while

the ERS winds (Table 3) produce the highest flux (-0.70 Gt/yr). As shown in Table 1, the winds

from Esbensen and Kushnir (1981) yield a global sea-air flux (-0.65 Gt/yr) between the ERS and

SSM/I results. A negative sea-air flux represents uptake of CO2 by the ocean. The largest global

sea-air CO2 flux is obtained with the Wanninkhof and McGillis (1999) gas transfer algorithm.

This algorithm yields yearly global sea-air CO2 fluxes of -2.27, -2.01, and -1.73 Gt/yr using the

ERS, Esbensen and Kushnir (1981), and SSM/I wind climatologies, respectively. The Southern

Ocean (-0.58 to -1.48 Gt/yr), North Atlantic (-0.27 to -0.73 Gt/yr), and North Pacific (-0.17 to

-0.48 Gt/yr) are the largest sinks of CO2 throughout the yee.r (see Tables 1, 2, and 3). The North

Pacific becomes a weak source (0.02 to 0.13 Gt/yr) of CO2 during the Boreal summer (July-

August). The equatorial Pacific is the largest source of CO2 (0.28 to 0.81 Gt/yr) with positive

values throughout the year. The largest flux in the equatorial Pacific is obtained with the Tans et

aI. (1990) algorithm and SSM/I winds. The Indian Ocean and the equatorial Atlantic are weak

sources of CO2 throughout the year (0.04 to 0.16 Gt/yr).
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Table 1. Sea-air CO 2 flux (Gt/yr) for the global oceans and for 6 regional oceanic domains. The estimates are from

four different gas transfer algorithms and using climatological wind speeds from Esbensen and Kushnir (1981).

LM86 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year
Global Oceans -0.85 -1.25 -1.22 -0.62 -0.36 -0.31 -0.14 -0.23 -0.45 -0.72 -0.82 -0.88 -0.65
Southern Ocean -0.71 -1.10 -0.98 -0.47 -0.32 -0.50 -0.50 -0.44 -0.43 -0.46 -0.50 -0.60 -0.58

North Atlantic -0.36 -0.35 -0.35 -0.32 -0.27 -.018 -0.11 -0.11 -0.17 -0.28 -0.37 -0.40 -0.27
Indian Ocean 0.06 0.04 0.02 0.00 0.01 0.07 0.08 0.07 0.05 0.00 0.01 0.03 0.04

Equatorial Atlantic 0.04 0.06 0.04 0.03 0.04 0.04 0.04 0.04 0.02 0.03 0.04 0.04 0.04
North Pacific -0.33 -0.33 -0.32 -0.28 -0.21 -0.12 0.02 0.05 -0.02 -0.16 -0.27 -0.34 -0.19

Equatorial Pacific 0.36 0.30 0.24 0.27 0.29 0.31 0.31 0.26 0.24 0.22 0.24 0.30 0.28

W92 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year
Global Oceans -1.37 -1.96 -1.89 -0.90 -0.50 -0.50 -0.23 -0.36 -0.68 -1.11 -1.32 -1.43 -1.02

Southern Ocean -1.10 -1.72 -1.58 -0.75 -0.50 -0.82 -0.81 -0.70 -0.68 -0.72 -0.79 -0.93 -0.92
North Atlantic -0.61 -0.59 -0.55 -0.49 -0.40 -0.27 -0.17 -0.17 -0.26 -0.44 -0.60 -0.66 -0.43

Indian Ocean 0.10 0.07 0.06 0.04 0.03 0.11 0.13 0.11 0.08 0.02 0.04 0.07 0.07

Equatorial Atlantic 0.06 0.10 0.07 0.06 0.06 0.06 0.06 0.06 0.04 0.05 0.06 0.06 0.06
North Pacific -0.53 -0.51 -0.48 -0.42 -0.32 -0.18 0.03 0.08 -0.03 -0.25 -0.44 -0.56 -0.30

Equatorial Pacific 0.55 0.47 0.39 0.45 0.48 0.47 0.48 0.41 0.38 0.35 0.38 0.46 0.44

TANS90 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year
Global Oceans -1.59 -2.37 -2.32 -1.17 -0.67 -0.56 -0.19 -0.38 -0.82 -1.37 -1.57 -1.67 -1.22
Southern Ocean -1.45 -2.21 -1.95 -0.96 -0.69 -1.06 -1.05 -0.94 -0.92 -0.96 -1.05 -1.23 -1.21
North Atlantic -0.78 -0.74 -0.73 -0.68 -0.59 -0.39 -0.24 -0.23 -0.35 -0.57 -0.75 -0.82 -0.57

Indian Ocean 0.14 0.10 0.06 0.02 0.04 0.15 0.17 0.16 0.11 0.02 0.04 0.09 0.09

Equatorial Atlantic 0.09 0.14 0.10 0.08 0.09 0.10 0.09 0.09 0.06 0.08 0.09 0.10 0.09
North Pacific -0.70 -0.71 -0.68 -0.61 -0.47 -0.26 0.05 0.13 -0.03 -0.31 -0.55 -0.70 -0.40

Equatorial Pacific 0.83 0.70 0.56 0.66 0.71 0.72 0.72 0.61 0.58 0.53 0.57 0.69 0.66

WM99 Jan Feb Mar Apr May Jun . Jul Aug Sep Oct Nov Dec Year
Global Oceans -2.87 -3.67 -3.53 -1.76 -0.95 -1.08 -0.67 -0.75 -1.25 -2.09 -2.63 -2.95 -2.01

Southern Ocean -1.65 -2.62 -2.64 -1.27 -0.76 -1.45 -1.37 -1.15 -1.05 -1.13 -1.22 -1.44 -1.48
North Atlantic -1.17 -1.08 -0.91 -0.68 -0.50 -0.31 -0.18 -0.18 -0.36 -0.72 -1.04 -1.21 -0.70

Indian Ocean 0.09 0.06 0.05 0.02 0.00 0.19 0.25 0.17 0.07 0.01 0.02 0.06 0.08

Equatorial Atlantic 0.06 0.10 0.06 0.06 0.06 0.07 0.06 0.07 0.04 0.05 0.07 0.07 0.06
North Pacific -0.90 -0.79 -0.68 -0.56 -0.38 -0.19 0.03 0.08 -0.07 -0.46 -0.81 -1.03 -0.48

Equatorial Pacific 0.61 0.50 0.41 0.47 0.47 0.47 0.49 0.41 0.38 0.34 0.38 0.48 0.45

The four gas transfer algorithms used are: LM86=Liss and Merlivat (1986); W92=Wanninkhof (1992);
TANS90=Tans et al. (1990); and WM99=Wanninkhof and McGillis (11999).

The six oceanic regions are defined as follows:
Southern Ocean: south of 30°S

North Atlantic: 10°N to 80°N, and 100°W to 0°E

Indian Ocean: 30°S to 20°N, and 40°E to 100°E

Equatorial Atlantic: 10°S to 10°N, and 40°W to 0°E
North Pacific: 15°N to 65°N, and 120°E to ll0°W

Equatorial Pacific: 10°S to 10°N, and 160°E to 75°W
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Table2. Sea-airCO 2 flux (Gt/yr) for the global oceans and for 6 regional oceanic domains. The estimates are from

four different gas transfer algorithms and using SSM/I climatological wind speeds.

LM86 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year
Global Oceans -0.71 -1.07 -1.03 -0.59 -0.33 -0.31 -0.08 -0.23 -0.41 -0.55 -0.71 -0.79 -0.57
Southern Ocean -0.67 -1.10 -0.87 -0.47 -0.37 -0.56 -0.60 -0.52 -0.50 -0.51 -0.53 -0.59 -0.61

North Atlantic -0.41 -0.39 -0.39 -0.36 -0.30 -0.22 -0.14 -0.12 -0.17 -0.25 -0.36 -0.44 -0.30
Indian Ocean 0.09 0.07 0.05 0.02 0.02 0.08 0.11 0.12 0.10 0.05 0.05 0.07 0.07

Equatorial Atlantic 0.06 0.09 0.07 0.06 0.06 0.06 0.07 0.06 0.04 0.05 0.06 0.06 0.06
North Pacific -0.29 -0.28 -0.29 -0.28 -0.20 -0.13 0.03 0.06 -0.02 -0.12 -0.23 -0.31 -0.17

Equatorial Pacific 0.38 0.34 0.26 0.29 0.35 0.41 0.46 0.40 0.36 0.34 0.31 0.34 0.35

W92 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year
Global Oceans -1.16 -1.69 -1.59 -0.85 -0.47 -0.52 -0.19 -0.38 -0.63 -0.86 -1.12 -1.29 -0.90

Southern Ocean -1.02 -1.70 -1.37 -0.75 -0.58 -0.92 -0.99 -0.84 -0.80 -0.80 -0.82 -0.90 -0.96

North Atlantic -0.68 -0.63 -0.62 -0.54 -0.45 -0.33 -0.21 -0.18 -0.25 -0.39 -0.58 -0.73 -0.47
Indian Ocean 0.14 0.12 0.10 0.06 0.04 0.13 0.19 0.19 0.15 0.09 0.09 0.11 0.12

Equatorial Atlantic 0.09 0.14 0.11 0.09 0.09 0.10 0.10 0.10 0.60 0.08 0.10 0.09 0.10
North Pacific -0.45 -0.43 -0.43 -0.43 -0.30 -0.20 0.05 0.09 -0.03 -0.19 -0.36 -0.50 -0.26

Equatorial Pacific 0.58 0.53 0.41 0.47 0.56 0.62 0.70 0.61 0.55 0.52 0.48 0.52 0.55

TANS90 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year
Global Oceans -1.32 -2.01 -1.94 -1.10 -0.61 -0.58 -0.08 -0.38 -0.73 -1.02 -1.34 -1.50 -1.05
Southern Ocean -1.39 -2.22 -1.74 -0.98 -0.79 -1.17 -1.24 -1.09 -1.06 -1.06 -1.11 -1.23 -1.26

North Atlantic -0.84 -0.80 -0.82 -0.76 -0.66 -0.48 -0.31 -0.25 -0.34 -0.52 -0.74 -0.91 -0.62
Indian Ocean 0.20 0.17 0.12 0.06 0.05 0.17 0.23 0.25 0.22 0.13 0.13 0.16 0.16

Equatorial Atlantic 0.14 0.22 0.16 0.14 0.13 0.14 0.14 0.14 0.08 0.12 0.14 0.14 0.14
North Pacific -0.62 -0.62 -0.63 -0.61 -0.44 -0.28 0.08 0.13 -0.03 -0.25 -0.47 -0.64 -0.37

Equatorial Pacific 0.87 0.78 0.60 0.68 0.83 0.93 1.03 0.89 0.82 0.77 0.70 0.78 0.81

WM99 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year
Global Oceans -2.39 -3.06 -2.90 -1.61 -0.93 -1.10 -0.62 -0.71 -1.10 -1.59 -2.12 -2.59 -1.73
Southern Ocean -1.43 -2.49 -2.17 -1.24 -0.95 -1.66 -1.82 -1.46 -1.30 -1.27 -1.25 -1.31 -1.53

North Atlantic -1.26 -1.10 -0.99 -0.74 -0.55 -0.39 -0.24 -0.21 -0.34 -0.59 -0.97 -1.33 -0.73
Indian Ocean 0.15 0.12 0.09 0.05 0.01 0.23 0.36 0.34 0.22 0.11 0.09 0.12 0.16

Equatorial Atlantic 0.11 0.16 0.12 0.11 0.11 0.13 0.14 0.13 0.08 0.11 0.13 0.12 0.12
North Pacific -0.69 -0.59 -0.55 -0.56 -0.34 -0.22 0.07 0.10 -0.06 -0.30 -0.59 -0.84 -0.38
Equatorial Pacific 0.64 0.59 0.43 0.52 0.61 0.73 0.91 0.77 0.68 0.63 0.55 0.59 0.64

The four gas transfer algorithms used are: LM86=Liss and Merlivat (1986); W92=Wanninkhof (1992);
TANS90=Tans et al. (1990); and WM99=Wanninkhof and McGillis (1999).

The six oceanic regions are defined as follows:
Southern Ocean: south of 30°S

North Atlantic: 10°N to 80°N, and 100°W to 0°E
Indian Ocean: 30°S to 20°N, and 40°E to 100°E

Equatorial Atlantic: 10°S to 10°N, and 40°W to 0°E
North Pacific: 15°N to 65°N, and 120°E to ll0°W

Equatorial Pacific: 10°S to 10°N, and 160°E to 75°W
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Table3. Sea-airCO 2 flux (Gt/yr) for the global oceans and for 6 regional oceanic domains. The estimates are from
four different gas transfer algorithms and using ERS climatological wind speeds.

LM86 Jan Feb Mar Apt May Jun Jul Aug Sep Oct Nov Dec Year

Global Oceans -0.84 -1.22 -1.23 -0.68 -0.43 -0.40 -0.17 -0.32 -0.57 -0.73 -0.85 -0.91 -0.70
Southern Ocean -0.76 -1.16 -1.02 -0.55 -0.42 -0.58 -0.63 -0.57 -0.57 -0.58 -0.61 -0.67 -0.67

North Atlantic -0.39 -0.37 -0.38 -0.35 -0.31 -0.23 -0.15 -0.11 -0.18 -0.29 -0.37 -0.41 -0.30
Indian Ocean 0.08 0.07 0.05 0.03 0.03 0.09 0.11 0.11 0.08 0.04 0.04 0.06 0.07

Equatorial Atlantic 0.05 0.07 0.06 0.05 0.05 0.05 0.06 0.05 0.03 0.05 0.05 0.05 0.05
North Pacific -0.26 -0.25 -0.27 -0.26 -0.20 -0.15 0.02 0.04 -0.04 -0.15 -0.24 -0.30 -0.17

Equatorial Pacific 0.33 0.29 0.23 0.26 0.32 0.37 0.42 0.35 0.31 0.29 0.27 0.31 0.31

W92 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year
Global Oceans -1.36 -1.92 -1.93 -1.03 -0.66 -0.66 -0.34 -0.55 -0.91 -1.19 -1.39 -1.50 -1.12
Southern Ocean -1.18 -1.82 -1.64 -0.91 -0.70 -0.96 -1.06 -0.95 -0.93 -0.95 -0.98 -1.06 -1.10

North Atlantic -0.65 -0.60 -0.60 -0.54 -0.46 -0.34 -0.22 -0.17 -0.28 -0.46 -0.59 -0.68 -0.47
Indian Ocean 0.13 0.11 0.09 0.06 0.05 0.15 0.20 0.18 0.13 0.08 0.08 0.10 0.11

Equatorial Atlantic 0.08 0.11 0.09 0.08 0.08 0.08 0.08 0.08 0.51 0.07 0.08 0.08 0.08
North Pacific -0.40 -0.38 -0.40 -0.39 -0.30 -0.22 0.03 0.07 -0.06 -0.23 -0.39 -0.49 -0.26

Equatorial Pacific 0.51 0.45 0.37 0.44 0.51 0.56 0.63 0.52 0.48 0.44 0.41 0.47 0.48

TANS90 Jan Feb Mar Apt May Jun Jul Aug Sep Oct Nov Dec Year
Global Oceans -1.58 -2.30 -2.34 -1.28 -0.80 -0.73 -0.25 -0.56 -1.03 -1.37 -1.62 -1.73 -1.30
Southern Ocean -1.55 -2.33 -2.02 -1.12 -0.89 -1.21 -1.30 -1.18 -1.17 -1.19 -1.25 -1.38 -1.38

North Atlantic -0.80 -0.76 -0.79 -0.75 -0.66 -0.49 -0.32 -0.24 -0.37 -0.59 -0.75 -0.85 -0.61
Indian Ocean 0.19 0.16 0.12 0.07 0.07 0.19 0.25 0.24 0.19 0.11 0.11 0.14 0.15

Equatorial Atlantic 0.12 0.17 0.13 0.12 0.12 0.12 0.12 0.12 0.08 0.10 0.12 0.12 0.12
North Pacific -0.56 -0.56 -0.60 -0.57 -0.44 -0.32 0.04 0.11 -0.07 -0.30 -0.49 -0.63 -0.37

Equatorial Pacific 0.77 0.67 0.54 0.63 0.76 0.85 0.94 0.79 0.72 0.66 0.62 0.72 0.72

WM99 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year
Global Oceans -2.76 -3.56 -3.63 -2.11 -1.39 -1.40 -1.02 -1.21 -1.83 -2.41 -2.80 -3.08 -2.27

Southern Ocean -1.83 -2.86 -2.80 -1.67 -1.28 -1.79 -2.05 -1.78 -1.70 -1.69 -1.65 -1.71 -1.90
North Atlantic -1.19 -1.04 -0.97 -0.75 -0.57 -0.40 -0.25 -0.20 -0.41 -0.74 -1.02 -1.24 -0.73
Indian Ocean 0.13 0.11 0.09 0.05 0.03 0.27 0.40 0.31 0.17 0.08 0.07 0.10 0.15

Equatorial Atlantic 0.08 0.11 0.09 0.09 0.09 0.10 0.11 0.10 0.07 0.09 0.10 0.09 0.09
North Pacific -0.55 -0.47 -0.48 -0.48 -0.33 -0.26 0.03 0.07 -0.11 -0.40 -0.65 -0.84 -0.37

Equatorial Pacific 0.53 0.46 0.36 0.44 0.52 0.61 0.75 0.61 0.53 0.48 0.44 0.51 0.52

The four gas transfer algorithms used are: LM86=Liss and Merlivat (1986); W92=Wanninkhof (1992);
TANS90=Tans et aI. (1990); and WM99=Wanninkhof and McGillis (]t999).

The six oceanic regions are defined as follows:
Southern Ocean: south of 30°S

North Atlantic: 10°N to 80°N, and 100°W to 0°E

Indian Ocean: 30°S to 20°N, and 40°E to 100°E

Equatorial Atlantic: 10°S to 10°N, and 40°W to 0°E
North Pacific: 15°N to 65°N, and 120°E to 110°W

Equatorial Pacific: 10°S to 10°N, and 160°E to 75°W
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Monthly time series for the global oceans and six regional domains are shown for all wind speed

data sets and gas transfer algorithms in Figures 8, 9, and 10. The Southern Ocean has the largest

seasonal cycle with a peak in ocean uptake during January - February. The North Atlantic and

North Pacific Oceans have a reduced seasonal cycle, with strongest uptake during fall-winter and

nearly neutral conditions during the summer months. These regions have small outgassing

(North Pacific) or small ingassing (North Atlantic) of CO2 during the summer months because

the potentially high pCO2 values due to elevated SST conditions are counterbalanced by an

increased pCO2 drawdown by biological activity. The Indian Ocean, equatorial Pacific, and

equatorial Atlantic have no distinctive seasonal cycle.

Table 4. Average wind speeds for the global oceans and 6 regional oceanic domains. The tabulated values are
presented for three different wind climatologies: Esbensen and Kushnir (1981), ERS, and SSM/I.

Wind Climatology Esbensen and ERS SSM/I

Kushnir (1981)
Global Oceans 7.1 7.3 7.2

Southern Ocean 9.1 9.6 9.0
North Atlantic 7.4 7.3 7.4

Indian Ocean 5.9 6.3 6.6

Equatorial Atlantic 5.7 6.2 6.7
North Pacific 7.5 7.4 7.3

Equatorial Pacific 5.7 5.8 6.2

The six oceanic regions are defined as follows:
Southern Ocean: south of 30°S

North Atlantic: 10°N . to 80°N, and 100°W to 0°E
Indian Ocean: 30°S to 20°N, and 40°E to 100°E

Equatorial Atlantic: 10°S to 10°N, and 40°W to 0°E
North Pacific: 15°N to 65°N, and 120°E to 110°W

Equatorial Pacific: 10°S to 10°N, and 160°E to 75°W

Our CO2 flux estimates agree well with the estimates of Takahashi et al. (1997) using Esbensen
and Kushnir (1981) winds. Their estimates using the Liss and Merlivat (1986), Wanninkhof

(1992), and Wanninkhof and McGillis (1999) gas transfer algorithms are -0.60, -1.01, and -1.17

Gt/yr, respectively. Our equivalent estimates are -0.65, -1.02, and -1.22 Gt/yr.

Lef6vre et al. (1999) assessed the seasonality of the oceanic sink for CO2 in the northern

hemisphere. They compiled quarterly maps of ApCO2 interpolated from pCO2 measurements in

the North Atlantic and the North Pacific Oceans using an objective mapping technique. Their

estimates of the CO2 flux for the Northern Hemisphere north of 10°N using SSM/I winds and the

Liss and Merlivat (1986), Wanninkhof (1992), and Tans et al. (1990) algorithms are -0.45, -0.70,

and -0.86 Gt/yr, respectively. Our equivalent estimates are -0.52, -0.81, and -1.08 Gt/yr. Lef_vre

et al. (1999) estimates using Esbensen and Kushnir (1981) winds using the same three gas

transfer algorithms are -0.37, -0.60, and -0.76 Gt/yr, respectively. Our equivalent estimates are

-0.50, -0.78, -1.03 Gt/yr. Overall, our estimates are 15% to 35% higher than those of Lef6vre et

al. (1999). Since we used pCO2 data based on Takahashi et aI. (1997), and Lef6vre et al. (1999)

used revised pCO2 maps based on additional observations, we attributed our CO2 flux

overestimates to the different pCO2 data sets used for the estimates.
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Figure 8. Seasonal variability of sea-air CO2 flux derived wilih Esbensen and Kushnir (1981) winds for the

global oceans and six different oceanic regions. The four separate lines (solid, dashed, dotted, and thick

solid) represent the respective gas transfer algorithms used.

16



Global Oceans
I I I I I I I I I I I

_ ° °°°°°°°°o'_ .,_

"4" I I I I I I I I I I I

J F M A M J J A S O N D
Southern Ocean

1 I I I L I I l I i I I

0

,, // ................................
:. \ j ." =,

0 -2 "" " ""
LL

-3

-4 I

¢3
v

C_-2
o
LL

-3

-4

0

0-2
O
LL

-3

-4

I I I I I I I I I 1

F M A M J J A S O N D
Indian Ocean

I l I I L t I I I I

I I I I I I I I I I I

J F M A M J J A S O N D

North Pacific
I I I I I I 1 I I I i

t I I I I i I I I I I

J F M A M J J A S O N D

Thin Solid Line: Liss and Merlivat (1986)
Dashed Line: Wanninkhof (1992)
Dotted Line: Tans et al. (1990)
Thick Solid Line: Wanninkhof and McGillis (1999)

Southern Ocean: south of 30°S

North Atlantic: 10°N to 80°N, and 100°W to 0°E

Indian Ocean: 30°S to 30°N, and 40°E to 100°E
Equatorial Atlantic: 10°S to 10°N, and 40°W to 0°E
North Pacific: 15°N to 65°N, and 120°E to 110°W
Equatorial Pacific: 10°S to 10°N, and 160°E to 75°W

_-1
g

8-2
LL

-3

-4

"_'1
• g

o.2
LL .

-3

-4

:

01

0. 2
o
LL

-3-

-4

North Atlantic
I I l I A I I I I I I

I I I I I I I I ! I I

J F M A M J J A S O N D

Equatorial Atlantic
I I I I l I I I I I I

llr ............................. ,,,,r- ....... _ ......... 11

I I I I I I I I I I 1

Eguatori=P,c.icI I I I I I I I

I I I I I I I I I I I

J F M A M J J A S O N D

Figure 9. Seasonal variability of sea-air CO2 flux derived with ERS winds for the global oceans and six

different oceanic regions. The four separate lines (solid, dashed, dotted, and thick solid) represent the

respective gas transfer algorithms used.
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Figure 10. Seasonal variability of sea-air CO2 flux derived with SSM/I winds for the global oceans and

six different oceanic regions. The four separate lines (solid, dashed, dotted, and thick solid) represent the

respective gas transfer algorithms used.
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4. Sensitivity to SST and SSS

As mentioned in Section 2, sensitivity analyses were conducted with different SST and SSS

inputs. The Tans et aI. (1990) gas transfer algorithm was used in all cases. Variability in SST

and SSS global distributions affect the calculation of TA (Millero et al., 1998), CO2 solubility,

the Schmidt number, and the ocean pCO2 via the dissociation constants for carbonic acid, boric

acid, and sea water, which all combined affect the sea-air CO2 flux. The World Ocean Atlas

1998 SST and SSS data are used as a reference calculation to be compared with the results of

other sea-air flux calculations using different combinations of SST and SSS. The results are

summarized in Table 5. Figure 11 shows the global distribution of the sea-air CO2 flux using

two different combinations of SST and SSS monthly fields, World Ocean Atlas 1998 SST and

SSS (top plate), and Reynolds and Smith (1994) SST and World Ocean Atlas 1998 SSS (middle

plate). The bottom plate shows the differences between the two SST and SSS combinations.

The differences are relatively large, ranging from -4 to +4 Gt/yr. Globally, the mean ocean

uptake of CO2 is 35% larger when the Reynolds and Smith (1994) SST data are used, and the

seasonal range is 17% larger.

Table 5. Sensitivity of sea-air global CO 2 flux (in Gt/yr) to SST and SSS climatologies. Tabulated values show the

mean and seasonal range for various combinations of SST and SSS climatologies. Tabulated values for salinity

biases of_+0.2 are also included. The differences in percent relative to the reference calculation (using SST and SSS

from World Oceans Atlas 1998) are also shown. All estimates were obtained using the Tans et al. (1990) gas
transfer algorithm and ERS wind speeds.

SST and SSS Sources Mean Difference(%) Range Difference(%)
WOA94 SST and SSS -1.40 +0.8 13.5 +18.1

WOA94 SST and WOA98 SSS -1.25 -4.2 13.4 +16.9
WOA98 SST and WOA94 SSS -1.37 +5.1 11.6 +1.2

R&S94 SST and WOA98 SSS -1.75 +34.7 13.4 +17.4

WOA98 SST and WOA98 SSS+0.2 -0.91 -42.8 11.3 -1.1
WOA98 SST and WOA98 SSS-0.2 -1.86 +42.7 11.6 +1.3

The annual mean and seasonal range for the reference calculation are -1.30 Gt/yr and 11.4 Gt/yr, respectively. The

mean SST and SSS deviations between the WOA98 and WOA94 climatologies are -0.05 _+0.61 °C and 0.18 _+1.41,

respectively. The mean SST deviation between the WOA98 and R&S94 climatologies is 0.24 +3.42 °C.

WOA98: World Ocean Atlas 1998 (Conkright et al., 1998)
WOA94: World Ocean Atlas 1994 (Levitus and Boyer, 1994; Levitus et al., 1994)

R&S94: High-resolution global sea surface temperature climatology (Reynolds and Smith, 1994)

The use of both SST and SSS from the World Ocean Atlas 1994 data causes an increase in ocean

uptake of only 0.8%, but the seasonal range increases 18% (Figure 12 and Table 5). The
combination of World Ocean Atlas 1998 SST and World Ocean Atlas 1994 SSS causes an

increase of 5% in CO2 uptake, with a slight increase of seasonal range (1%).

The last sensitivity test is conducted with the inclusion of a salinity bias on the SSS seasonal

fields. The bias was chosen to be +0.2, in the context of remote sensing instrument accuracy.
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Figure 11. Global sea-air C02 flux derived with the Tans e t al. (1990) gas transfer algorithm and two

different combinations of SST and SSS fields: World Ocean Atlas 1998 SST and SSS (top panel), and

Reynolds and Smith (1994) SST and World Ocean Atlas 1998 SSS (middle panel). The bottom panel shows

the difference between the top panel and the middle panel flux distributions.
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Figure 12. Global sea-air CO2 flux derived with the Tans et al. (1990) gas transfer algorithm and two

different combinations of SST and SSS fields: World Ocean Atlas 1998 SST and SSS (top panel), and World
Ocean Atlas 1994 SST and SSS (middle panel). The bottom panel shows the difference between the top
panel and the middle panel flux distributions.
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This bias may be related to skin versus bulk salinity retrievals, and to some extent related to the

mission specifications. Table 5 shows that the +0.2 bias in salinity causes an error of +43% on

the mean global CO2 flux, and a change of +1% on the seasonal range. This result shows that

relatively small changes in salinity cause large changes in the global sea-air flux, posing a

significant challenge for future remote sensing salinity missions aimed at helping the

development of global sea-air CO2 flux algorithms. This study also indicates the potential

impacts of changes in the oceanic hydrologic cycle on ('.02 fluxes, although salinity changes

would be regional and could be either positive or negative. SSS changes in regions of high flux

could be significant to the global CO2 flux.

5. Summary and Conclusions

We used an ocean pCO2 model (Signorini et al., 2001a; Signorini et al., 2001b), combined with

algorithms for TA and gas transfer, to estimate the seasonal sea-air CO2 flux for the global

oceans. Sensitivity analyses of sea-air CO2 flux to wind speed climatologies, gas transfer

algorithms, SSS and SST were conducted for the global oceans and regional domains.

The Liss and Merlivat (1986) gas transfer algorithm produces the smallest sea-air flux with all

three wind speed climatologies. Using this algorithm, the global sea-air flux ranges from -0.57

Gt/yr using SSM/I winds, to -0.70 Gt/yr using ERS winds. The largest sea-air flux was obtained

with the Wanninkhof and McGillis (1999) gas transfer algorithm, which yields -1.73 Gt/yr with

SSM/I winds and -2.27 Gt/yr with ERS winds.. The Southern Ocean (-0.58 to -1.48 Gt/yr),

North Atlantic (-0.27 to -0.73 Gt/yr), and North Pacific (-0.17 to -0.48 Gt/yr) are the largest sinks

of CO2 throughout the year. The equatorial Pacific is the largest source of CO2 (0.28 to 0.81

Gt/yr) with positive values throughout the year. The largest flux in the equatorial Pacific is

obtained with the Tans et al. (1990) algorithm and SSM/I winds. The Indian Ocean and the

equatorial Atlantic are weak sources of CO2 throughout the year (0.04 to 0.16 Gt/yr).

The Southern Ocean has the largest seasonal cycle with a peak in ocean uptake during January-

February (-1.10 to -2.86 Gt/yr). The North Atlantic and North Pacific Oceans have a reduced

seasonal cycle, with strongest uptake during fall-winter and nearly neutral conditions during the

summer months. These regions have small outgassing (North Pacific) or small ingassing (North

Atlantic) of CO2 during the summer months because the potentially high pCO2 values due to

elevated SST conditions are compensated by an increased pCO2 drawdown by biological

activity. The Indian Ocean, equatorial Pacific, and equatorial Atlantic have no distinctive

seasonal cycle.

The sensitivity of sea-air flux to SST and SSS was conducted with several climatological
combinations. Data from the World Ocean Atlas 1998 was assumed as a reference calculation for

the other SST and SSS combinations. Globally, the mean ocean uptake of CO2 is 35% larger

when the Reynolds and Smith (1994) SST data are used in combination with SSS from the

World Ocean Atlas 1998. The seasonal range with this SST and SSS combination is 17% larger.
The use of both SST and SSS from the World Ocean Atlas 1994 data causes an increase in ocean

uptake of only 0.8%, but the seasonal range increases 18%. The combination of World Ocean
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Atlas 1998SSTandWorld OceanAtlas 1994SSScausesanincreaseof 5% in CO2 uptake, with
a slight increase of seasonal range (1%).

An additional sensitivity test was conducted with the inclusion of a salinity bias on the SSS

seasonal fields. The bias was chosen to be +0.2, which is assumed to be related to instrument

error and/or limitations (for example, skin versus bulk salinity retrievals). The +0.2 bias in

salinity causes an error of +43% on the mean global CO2 flux, and a relatively small change of

+1% on the seasonal range. This result shows that small changes in salinity (< 1%) cause large

changes in the global sea-air flux, posing a significant challenge for future remote sensing

salinity missions aimed at helping the development global sea-air CO2 flux algorithms.
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